Part Number Hot Search : 
VY1C3 MA3SE02 DTC11 MB3793 DRA4152Z 21200 167BZXI BD302
Product Description
Full Text Search
 

To Download IRLR8711CPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD - 97238A
IRLR8711CPBF
Applications l High Frequency Synchronous Buck Converters for Computer Processor Power l High Frequency Isolated DC-DC Converters with Synchronous Rectification Benefits l Very Low RDS(on) at 4.5V VGS l Ultra-Low Gate Impedance l Fully Characterized Avalanche Voltage and Current l Lead-Free
G
HEXFET(R) Power MOSFET
VDSS
25V
RDS(on) max
5.6m:
D
Qg
13nC
G
D
S
D-Pak IRLR8711CPBF
D
S
Gate
Drain
Source
Absolute Maximum Ratings
Parameter
VDS VGS ID @ TC = 25C ID @ TC = 100C IDM PD @TC = 25C PD @TC = 100C TJ TSTG Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Maximum Power Dissipation Maximum Power Dissipation Linear Derating Factor Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds 300 (1.6mm from case)
Max.
25 20 84f 60f 340 68 34 0.45 -55 to + 175
Units
V
A W W/C C
g g
Thermal Resistance
Parameter
RJC RJA RJA Junction-to-Case Junction-to-Ambient (PCB Mount) Junction-to-Ambient
h
Typ.
Max.
2.2 50 110
Units
C/W
h
ghA
--- --- ---
Notes through are on page 10
www.irf.com
1
09/22/06
IRLR8711CPBF
Static @ TJ = 25C (unless otherwise specified)
Parameter
BVDSS VDSS/TJ RDS(on) VGS(th) VGS(th)/TJ IDSS IGSS gfs Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss RG td(on) tr td(off) tf Ciss Coss Crss Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Total Gate Charge Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) Output Charge Gate Resistance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Parameter Single Pulse Avalanche Energyd Avalanche CurrentA Repetitive Avalanche Energy
Min. Typ. Max. Units
25 --- --- --- 1.35 --- --- --- --- --- 86 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 16 4.5 6.2 1.8 -6.3 --- --- --- --- --- 13 3.0 1.9 4.3 3.8 6.2 6.4 1.5 9.7 29 10 4.4 1640 430 210 --- --- 5.6 7.8 2.35 --- 1.0 150 100 -100 --- 20 --- --- --- --- --- --- 3.4 --- --- --- --- --- --- --- Typ. --- --- --- pF VGS = 0V VDS = 13V ns nC nC VDS = 13V VGS = 4.5V ID = 17A See Fig.16 S nA V mV/C A V
Conditions
VGS = 0V, ID = 250A
mV/C Reference to 25C, ID = 1mA m VGS = 10V, ID = 21A VGS = 4.5V, ID = 17A VDS = VGS, ID = 50A VDS = 20V, VGS = 0V VDS = 20V, VGS = 0V, TJ = 125C VGS = 20V VGS = -20V VDS = 13V, ID = 17A
e e
VDS = 10V, VGS = 0V VDD = 13V, VGS = 4.5Ve ID = 17A Clamped Inductive Load
= 1.0MHz Max. 47 17 6.8 Units mJ A mJ
Avalanche Characteristics
EAS IAR EAR
--- --- --- --- --- --- --- --- 13 8.0
Diode Characteristics
Parameter
IS ISM VSD trr Qrr ton Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode)A Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time
Min. Typ. Max. Units
84f A 340 1.0 20 12 V ns nC
Conditions
MOSFET symbol showing the integral reverse p-n junction diode. TJ = 25C, IS = 17A, VGS = 0V TJ = 25C, IF = 17A, VDD = 13V di/dt = 300A/s
e
e
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
2
www.irf.com
IRLR8711CPBF
1000
TOP VGS 10V 5.0V 4.5V 3.7V 3.5V 3.0V 2.7V 2.5V
1000
TOP VGS 10V 5.0V 4.5V 3.7V 3.5V 3.0V 2.7V 2.5V
ID, Drain-to-Source Current (A)
100
BOTTOM
ID, Drain-to-Source Current (A)
100
BOTTOM
10
10 2.5V
1 2.5V 0.1 0.1 1
60s PULSE WIDTH
Tj = 25C 10 1 100 1000 0.1 1
60s PULSE WIDTH
Tj = 175C 10 100 1000
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000
2.0
RDS(on) , Drain-to-Source On Resistance (Normalized)
ID, Drain-to-Source Current (A)
ID = 42A VGS = 10V
100
T J = 175C
1.5
10
1.0
1
T J = 25C VDS = 15V 60s PULSE WIDTH
0.1 1 2 3 4 5 6 7 8
0.5 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Junction Temperature (C)
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance vs. Temperature
www.irf.com
3
IRLR8711CPBF
10000
VGS = 0V, f = 1 MHZ Ciss = C gs + Cgd, C ds SHORTED Crss = C gd Coss = Cds + Cgd
5.0 ID= 17A
VGS, Gate-to-Source Voltage (V)
4.0
VDS= 20V VDS= 13V
C, Capacitance (pF)
VDS= 5.0V 3.0
Ciss 1000 Coss
2.0
Crss
1.0
100 1 10 VDS, Drain-to-Source Voltage (V) 100
0.0 0 2 4 6 8 10 12 14 16 18 QG, Total Gate Charge (nC)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
1000
1000
OPERATION IN THIS AREA LIMITED BY RDS(on)
100
T J = 175C
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
100
10
100sec
10
T J = 25C
1 Tc = 25C Tj = 175C Single Pulse 0.1 1 10
1msec 10msec
VGS = 0V 1.0 0.0 0.5 1.0 1.5 2.0 2.5 VSD, Source-to-Drain Voltage (V)
100
VDS, Drain-to-Source Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
4
www.irf.com
IRLR8711CPBF
90 Limited By Package
VGS(th) , Gate Threshold Voltage (V)
2.5
80 70
ID, Drain Current (A)
2.0
60 50 40 30 20 10 0 25 50 75 100 125 150 175 T C , Case Temperature (C)
1.5
ID = 50A
1.0
0.5 -75 -50 -25 0 25 50 75 100 125 150 175 200 T J , Temperature ( C )
Fig 9. Maximum Drain Current vs. Case Temperature
Fig 10. Threshold Voltage vs. Temperature
10
Thermal Response ( Z thJC ) C/W
1
D = 0.50 0.20 0.10 0.05 0.02 0.01 SINGLE PULSE ( THERMAL RESPONSE )
0.1
J
R1 R1 J 1 2
R2 R2
R3 R3 3
R4 R4 C 4
Ri (C/W)
0.0623 0.4903 1.1779 0.4716
i (sec)
0.000006 0.000029 0.000455 0.001642
1
2
3
4
0.01
Ci= i/Ri Ci i/Ri
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 1E-005 0.0001 0.001 0.01 0.1
0.001 1E-006
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRLR8711CPBF
RDS(on) , Drain-to -Source On Resistance ( m)
25 ID = 21A 20
200
EAS , Single Pulse Avalanche Energy (mJ)
180 160 140 120 100 80 60 40 20 0 25 50 75 100
ID TOP 5.7A 7.9A BOTTOM 17A
15
10
T J = 125C
5 T J = 25C 0 2 4 6 8 10 12
125
150
175
VGS, Gate -to -Source Voltage (V)
Starting T J , Junction Temperature (C)
Fig 12. On-Resistance vs. Gate Voltage
Fig 13. Maximum Avalanche Energy vs. Drain Current
V(BR)DSS
15V
tp
DRIVER
VDS
L
RG
VGS 20V
D.U.T
IAS tp
+ V - DD
A
0.01
I AS
Fig 14a. Unclamped Inductive Test Circuit
LD VDS
Fig 14b. Unclamped Inductive Waveforms
+
VDD D.U.T VGS Pulse Width < 1s Duty Factor < 0.1%
90%
VDS
10%
VGS
td(on) tr td(off) tf
Fig 15a. Switching Time Test Circuit
Fig 15b. Switching Time Waveforms
6
www.irf.com
IRLR8711CPBF
Current Regulator Same Type as D.U.T.
Id Vds Vgs
50K 12V .2F .3F
D.U.T. VGS
3mA
+ V - DS
Vgs(th)
IG
ID
Current Sampling Resistors
Qgs1 Qgs2
Qgd
Qgodr
Fig 16a. Gate Charge Test Circuit
Fig 16b. Gate Charge Waveform
D.U.T
Driver Gate Drive
+
P.W.
Period
D=
P.W. Period VGS=10V
+
Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer
*
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
-
-
+
RG
* * * * dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test
VDD
VDD
+ -
Re-Applied Voltage Inductor Curent
Body Diode
Forward Drop
Ripple 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET(R) Power MOSFETs
www.irf.com
7
IRLR8711CPBF
D-Pak (TO-252AA) Package Outline
Dimensions are shown in millimeters (inches)
D-Pak (TO-252AA) Part Marking Information
@Y6HQG@) UCDTADTA6IADSAS XDUCA6TT@H7G GPUA8P9@A !"# %A! ! Q6SUAIVH7@S DIU@SI6UDPI6G S@8UDAD@S GPBP
6TT@H7G@9APIAXXA
DIAUC@A6TT@H7GAGDI@AA6A
,5)5 $
96U@A8P9@ @6SA X@@FA GDI@A6 A2A! %
Ir)AAQAAvAhriyAyvrAvv vqvphrAAGrhqArrA
6TT@H7G GPUA8P9@
AQAAvAhriyAyvrAvvAvqvphr AGrhqArrAAhyvsvphvAAurApryrry
Q6SUAIVH7@S
25
DIU@SI6UDPI6G S@8UDAD@S GPBP
,5)5
96U@A8P9@ QA2A9@TDBI6U@TAG@69AS@@ QSP9V8UAPQUDPI6G QA2A9@TDBI6U@TAG@69AS@@ QSP9V8UARV6GDAD@9AUPAUC@ 8PITVH@SAG@W@GAPQUDPI6G @6SA X@@FA A2A! %
6TT@H7G GPUA8P9@
6A2A6TT@H7GATDU@A8P9@
8
www.irf.com
IRLR8711CPBF
D-Pak (TO-252AA) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TR TRR TRL
16.3 ( .641 ) 15.7 ( .619 )
16.3 ( .641 ) 15.7 ( .619 )
12.1 ( .476 ) 11.9 ( .469 )
FEED DIRECTION
8.1 ( .318 ) 7.9 ( .312 )
FEED DIRECTION
NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
13 INCH
16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481.
Notes:
Repetitive rating; pulse width limited by
Calculated continuous current based on maximum allowable
junction temperature. Package limitation current is 42A.
max. junction temperature. Starting TJ = 25C, L = 0.34mH, RG = 25, IAS = 17A. Pulse width 400s; duty cycle 2%.
When mounted on 1" square PCB (FR-4 or G-10 Material).
For recommended footprint and soldering techniques refer to application note #AN-994. R is measured at TJ approximately at 90C.
Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR's Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.09/06
www.irf.com
9


▲Up To Search▲   

 
Price & Availability of IRLR8711CPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X